Hi friends, in this article, I am going to discuss about synchronous motor working principle and construction. I hope you will find it interesting and helpful.
 
Synchronous motor construction is very similar to that of a synchronous generator. As shown in the figure, essential parts of synchronous motor are same as those of the synchronous generator i.e. a stator and a rotor.
 
synchronous motor working principle
 

Synchronous Motor Construction

 
The stator houses 3-phase armature winding in the slots of its laminated core which are distributed over the entire yoke. This winding is similar to that used in synchronous generators and induction motors. It is connected to 3-phase AC supply.
 
The field winding is placed in the rotor slots and it is connected to the DC supply via two slip-rings. Due to this DC supply (known as excitation), rotor poles become alternatively N and S poles. The number of rotor poles is made equal to the number of stator poles. Modern synchronous motors often use brushless excitation. The rotor can be a salient-projected type or cylindrical type. Normally the salient pole rotor is preferred.
 
A simple synchronous motor is basically not self- starting. However, it can be made self-starting with the help of damper windings carried by the rotor poles. This motor is called synchronous motor because its rotor runs in synchronism with the synchronously rotating stator field.
 

Synchronous Motor Working Principle

 
The synchronous motor working principle is based on the principle of magnetic locking between stator and rotor poles.
 
To understand the working principle of synchronous motor, let the stator of the synchronous motor be wound for 2 poles. Let the rotor also produces two poles when they are excited by the external DC source.

  • As three-phase AC supply is connected to the stator winding, a rotating magnetic field (RMF) is produced.
  • This field rotates at the synchronous speed Ns. The two poles produced are N1 and S1 as shown in the figure.
  • synchronous motor construction

  • These stator poles (N1 and S1) rotate in the air gap between stator and rotor at synchronous speed in the clockwise direction.
  • The rotor is then excited by external DC source. It produces two poles N2 and S2 as shown in the figure.
  • The rotor is accelerated, to rotate in the clockwise direction by some external engine. This is because the synchronous motor is not self-starting.
  •  

  • If unlike poles N1 – S2 and S1 – N2 come close to each other, then due to the strong force of attraction, magnetic locking takes place between them.
  •  

  • Once the stator and rotor poles are locked magnetically with each other, the rotor will continue to rotate at synchronous speed along with the rotating magnetic field.
  • Then external engine coupled to the rotor can be decoupled.
  • The rotor will rotate at Ns as long as the magnetic lock between the stator and rotor continues to exist.

Synchronous Motor on No-load

 
When a synchronous motor is connected to the lines and started by some external means, it starts rotating at synchronous speed. If the motor is running at no-load and has no losses, then induced EMF, E is equal and opposite to the applied voltage and the stator and rotor poles are in line with each other as shown in Figure.
 
The resultant EMF, Er and hence the current drawn by the motor is zero. Thus the motor is said to be floating on the lines.

synchronous motor working principle

However, in an actual machine, some losses are always present with the result induced EMF, E falls back by a small angle and the rotor poles also falls back by the same angle relative to the stator poles.
 
This causes a resultant voltage, Er across the armature and the motor draws no-load current from the mains. The power drawn by the motor is just sufficient to make the motor running continuously at the synchronous speed.

synchronous motor on no-load

Now, when the load is applied to the shaft of the motor, the rotor falls back a little more relative to stator poles. Hence the torque angle or load angle, δ increases with the increase in load. This increases the resultant voltage, Er which in turn increases the current drawn by the motor from mains.
 
Thus a synchronous motor is able to supply the increasing mechanical loads, not by the decrease in speed, but by shifting the position of rotor poles with respect to the stator poles.
 
When the load applied to the shaft of the motor is further increased, the rotor poles and induced EMF falls back further. Hence the load angle, δ increases with the increase in the load. When δ increases, the resultant voltage Er increases and so does the armature current.
 
If a too high mechanical load is applied to the synchronous motor, the rotor is pulled out of synchronism, after which it comes to standstill.
 
The maximum value of torque that a motor can develop without losing its synchronism is called pull-out torque.
 
Thanks for reading about synchronous motor working principle and construction.
 

Synchronous Motor Objective Type Question Answers | MCQ

 

Results

Please share.
  • 3
  •  
  •  
  •  
  •  
  •  
  •  
    3
    Shares
Please share.
  • 3
  •  
  •  
  •  
  •  
  •  
  •  
    3
    Shares

#1 The maximum power developed in the synchronous motor will depend on

rotor excitation, maximum value of coupling angle and supply voltage.

#2 A synchronous motor switched on to supply with its field winding shorted on themselves. It will

start as an induction motor

#3 The back EMF set up in the stator of a synchronous motor will depend upon

rotor excitation only

#4 With the increase in the excitation current of synchronous motor the power factor of the motor will

improve

#5 The armature current of a synchronus motor has large values for

both low and high excitation

#6 A 3 phse 400 V, 50 Hz salient pole synchronus motor is fed from an infinite bus bars and is running at no load. Now if the field current of the motor is reduced to zero

the motor will run at synchronous speed

#7 A 3 phase, 400 V, 50 Hz 4 pole synchronous motor has a load angle of 10 degrees electrical. The equivallent mechnical degrees will be

5 degrees

#8 A 3 phase, 400 V, 50 Hz synchronous motor has fixed excitation. The load on the motar is doubbled. The torque angle, ɸ will become nearly

#9 A 3 phase, 400 V, 50 Hz synchronous motor has fixed excitation. The load on the motar is doubbled. The torque angle, ɸ will become nearly

#10 The break down torque of synchronous motor varies as

applied voltage

#11 The name plate of an induction motor reads 3 phase, 400 V, pf 0.8 lagging, 1440 RPM. On similar lines a name plate of synchronous motor should read

3 Phase, 400 V, 50 Hz, 0.8 pf leading, 1500 RPM

#12 In a 3 phase synchronous motor, the magnitude of field flux

remains constant at all loads

#13 A four pole synchronous machine has 48 slots. A coil having one coil side in slot number 1 and the other coil side in slot number 13 will be termed as

full pitch coil

#14 A three phase synchronous motor is running clockwise. In case, the direction of its field current is reversed

the motor will continue to run in the same direction

#15 In a synchronous motor out of the following losses, which one will have the highest proportion ?

Iron losses

#16 When a synchronous motor is connected to an infinite bus, while operating on leading power factor

the excitation voltage will be more than the supply voltage

#17 In a synchronous motor hunting can be minimised

by any of the above method

#18 While starting a synchronus motor by induction motor action, very high EMF is induced in the field. This induced EMF may damage the insulation of the field winding and of the slip rings. This insulation damage can be prevented by

either short-circuiting the field winding by field discharge resistance or splitting the field winding into several sections

#19 Synchronous motors are gererally of

salient pole type machines

#20 The fact that a synchronous motor with salient poles will operate, even if the field current is reduced to zero, can be explained by

magnetization of rotor poles by stator magnetic field

#21 Hunting of a synchronous motor may be due to

any of the above.

finish

Synchronous Machines | All Posts

 

© https://yourelectricalguide.com/ synchronous motor working principle and construction .

Please share.
  • 3
  •  
  •  
  •  
  •  
  •  
  •  
    3
    Shares

Leave a Reply

Your email address will not be published. Required fields are marked *