Instrumentation Lessons

Capacitive Level Measurement Instruments

Capacitive Level Measurement Instruments Capacitive level measurement instruments measure electrical capacitance of a conductive rod inserted vertically into a process vessel. As process level increases, capacitance increases between the rod and the vessel walls, causing the instrument to output a greater signal. The basic principle behind capacitive level instruments is the capacitance equation: C =

Capacitive Level Measurement Instruments Read More »

Stilling Well

Stilling Well Disturbances in the liquid tend to complicate liquid level measurement. These disturbances may result from liquid introduced into a vessel above the liquid level (splashing into the liquid’s surface), the rotation of agitator paddles, and/or turbulent flows from mixing pumps. Any source of turbulence for the liquid surface (or liquid-liquid interface) is especially

Stilling Well Read More »

Buoyant Force Instruments

Displacer level instruments exploit Archimedes’ Principle to detect liquid level by continuously measuring the weight of an object (called the displacer ) immersed in the process liquid. As liquid level increases, the displacer experiences a greater buoyant force, making it appear lighter to the sensing instrument, which interprets the loss of weight as an increase

Buoyant Force Instruments Read More »

Torque Tubes

Torque Tubes An interesting design problem for displacement-type level transmitters is how to transfer the sensed weight of the displacer to the transmitter mechanism while positively sealing process vapor pressure from that same mechanism. The most common solution to this problem is an ingenious mechanism called a torque tube. Unfortunately, torque tubes can be rather

Torque Tubes Read More »