Thermocouple Working Principle & Types

Thermocouple Working Principle & Types RTDs are completely passive sensing elements, requiring the application of an externally-sourced electric current in order to function as temperature sensors. Thermocouples, however, generate their own electric potential. In some ways, this makes thermocouple systems simpler because the device receiving the thermocouple’s signal does not have to supply electric power […]

Thermocouple Working Principle & Types Read More »

Stilling Well

Stilling Well Disturbances in the liquid tend to complicate liquid level measurement. These disturbances may result from liquid introduced into a vessel above the liquid level (splashing into the liquid’s surface), the rotation of agitator paddles, and/or turbulent flows from mixing pumps. Any source of turbulence for the liquid surface (or liquid-liquid interface) is especially

Stilling Well Read More »

Capacitive Level Measurement Instruments

Capacitive Level Measurement Instruments Capacitive level measurement instruments measure electrical capacitance of a conductive rod inserted vertically into a process vessel. As process level increases, capacitance increases between the rod and the vessel walls, causing the instrument to output a greater signal. The basic principle behind capacitive level instruments is the capacitance equation: C =

Capacitive Level Measurement Instruments Read More »

Other Differential Producers

Other Differential Producers Other pressure-based flow elements exist as alternatives to the orifice plate. The Pitot tube, for example, senses pressure as the fluid stagnates (comes to a complete stop) against the open end of a forward-facing tube. A shortcoming of the classic single-tube Pitot assembly is sensitivity to fluid velocity at just one point

Other Differential Producers Read More »