Range Extension of Ammeters | Voltmeters

There is no fundamental difference in the operating principles of ammeters and voltmeters. Both are current operated devices (except electrostatic type voltmeters) i.e. deflecting torque is produced when current flows through their operating coils.

In an ammeter, the deflecting torque is produced by the current to be measured or by a definite fraction of it whereas in a voltmeter torque is produced by the current proportional to the voltage to be measured.
 
Thus, the real difference between the two instruments is in the magnitude of the currents producing the deflecting torque. The essential requirements of a measuring instrument are that its introduction into the circuit, where measurements are to be made, does not alter the circuit conditions and the power consumed by them for their operation is small.
 
An ammeter is connected in series with the circuit whose current is to be measured. Therefore, it should have a low resistance. On the other hand, a voltmeter is connected in parallel with the circuit whose voltage is to be measured; therefore, it must have high resistance.
 
Thus we conclude that the difference is only in the resistance of the instrument, in fact, an ammeter can be converted into voltmeter by connecting a high resistance in series with it.
 
It is already seen that the moving coil instruments can carry the maximum current of about 50 mA safely and the potential drop across the moving coil instrument is about 50 mV. However, in practice, heavy currents and voltages are required to be measured. Therefore, it becomes necessary that the current and voltage being measured be reduced and brought within the range of the instrument.
 
There are four common devices used for the range extension of instruments namely; shunts, multipliers and current and potential transformers.

 

Range Extension of Ammeters

 
Shunts are used for the range extension of ammeters. A shunt is a low-value resistance having minimum temperature co-efficient and is connected in parallel with the ammeter whose range is to be extended. The combination is connected in series with the circuit whose current is to be measured.
 

Range Extension of Voltmeters

 
Multipliers are used for the range extension of voltmeters. The multiplier is a non-inductive high-value resistance connected in series with the instrument whose range is to be extended. The combination is connected across the circuit whose voltage is to be measured.
 

Range Extension of Moving Iron Instruments

 
Moving-iron instruments are mainly used on AC circuits. Here we shall discuss the range extension of moving iron instruments with reference to AC measurements.
 

Range Extension of Moving Iron Ammeter

 
Shunts are not used to extend the range of moving-iron AC ammeters. It is because the division of current between the operating coil and the shunt varies with frequency (since reactance of the coil depends upon frequency). In practice, the range of moving-iron AC ammeters are extended by one of following methods:

  • By changing the number of turns of the operating coil. For example, suppose that full-scale deflection is obtained with 400 ampere-turns. For full-scale reading with 100A, the number of turns required would be = 400 / 100 = 4. Similarly, for full-scale reading with 50A, the number of turns required in = 400/50 = 8. Thus the ammeter can be arranged to have different ranges by merely having a different number of turns on the coil. Since the coil carries the whole of the current to be measured, it has a few turns of thick wire. The usual ranges obtained by this method are from 0 -250 A.
  •  

  • For ranges above 0 – 250 A, a current transformer is used in conjunction with 0 – 5 A moving iron AC ammeter as shown in the figure. The current transformer is a step up transformer i.e. number of secondary turns is more than the primary turns. Usually, the primary winding of the transformer contains a single turn or at the most a few turns. The primary of this transformer is connected in series with the load and carries the load current. The AC ammeter is connected across the secondary of the transformer.
     
    Since in figure, the current transformer ratio is 10:1, it means that line (or load) current is equal to 10 times the reading on the AC meter. Therefore, load current, IL = 3 x 10 = 30 A.

range extension of ammeters and voltmeters
 

Range Extension of Moving Iron Voltmeter

 
The range of a moving-iron AC voltmeter is extended by connecting a high resistance (multiplier) in series with it.
 
For ranges higher than 0 – 750 V, where power wasted in the multiplier would be excessive, a 0 – 110 V moving-iron AC voltmeter is used in conjunction with a potential transformer as shown in the figure.
 
The potential transformer is a step-down transformer i.e. number of primary turns is more than the secondary turns. The primary of the transformer is connected across the load across which voltage is to be measured. The AC voltmeter is connected across the secondary.
 
Since in figure, the potential transformer ratio is 20:1, the load voltage is equal to 20 times the reading on the AC voltmeter.
Load voltage, VL = 100 x 20 = 2000 V
Note that both secondaries of the instrument transformers are grounded as a safety measure.
 

Shunt and Multiplier Calculation Example

 
shunt and multiplier calculation example
 

Electrical Measuring Instruments | All Posts

 

© http://www.yourelectricalguide.com/Range extension of ammeters and voltmeters.
Please share it to support me.

2 thoughts on “Range Extension of Ammeters | Voltmeters

  • October 16, 2018 at 3:58 am
    Permalink

    I think this is one of the most important
    info for me. And i am glad reading your article.
    But should remark on few general things, The web site style is great, the
    articles is really great : D. Good job, cheers

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *